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Noise effects on one-Pauli channels
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Abstract. The possibility of stochastic resonance of a quantum channel and hence the noise enhanced
quantum channel capacity is explored by considering one-Pauli channels which are more classical like. The
fidelity of the channel is also considered.
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tum communication

1 Introduction

Recently because of the development of quantum com-
puters [1] people have become interested in information
transmission through quantum channels [2]. Quantum in-
formation theories [3] can be used to describe processes
such as data storage, quantum cryptography [4] and quan-
tum teleportation [5]. However, after an initial burst of
papers following Shor’s discover of quantum factoring al-
gorithm [6], almost every work is aiming to solve the de-
coherence problem which is responsible for transition into
effectively classical behaviour [7]. There are people using
NMR techniques, which provide longer decoherence time
than previous techniques, claiming they can built a quan-
tum computer with a cup of coffee [8]. There are also peo-
ple trying to use various software methods, in particular,
quantum error correcting codes, to correct decoherence in-
duced errors. The decoherence problem lay at the heart of
the development of quantum mechanics. Apparently, de-
coherence is a hurdle need to be surmounted before quan-
tum computers can be materialized. However, is decoher-
ence, the counterpart of classical noise, really nuisance?
For people who know stochastic resonance [9], the answer
is perhaps “no”. Decoherence can be perhaps used as a
resource as entanglement had.

In two previous papers we have considered the noise
effects on the two-Pauli channels [10] and the depolarizing
channels [11] using the concept from stochastic resonance.
There is a question that whether does the results obtained
so far consistent with the classical results? For the two-
Pauli channel and depolarizing channel, it is not possi-
ble to check because they consist of flipping the phase
of the qubits (quantum bits) [12] which has no classical
counter part. However, it might be possible to consider a
one-Pauli channel that only flip the qubits amplitude. The
σ1 channel can be viewed as a binary symmetric channel,
while σ2 and σ3 channels are σ1 channel in a dual basis.
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What are the noise effects for each Pauli operator sepa-
rately? In this paper we will consider three different one-
Pauli channels to see how will the noise influence their
capacity and fidelity.

2 The noisy channel model

The classical world is made from different material. How-
ever, in the quantum world all objects are made of the
same elementary particles. The particles are in different
states of superposition. Only the information describing
them are different.

In the classical world the information is coded as bits
and is described by 0 or 1, while the quantum world the
information is coded as qubit and is described by the cor-
responding density matrix.

Schumacher and Nielsen [13] have developed a quan-
tum information theory to describe the information pro-
cessing in the quantum world. In their formulation a quan-
tum channel can be considered as a process defined by an
input density matrix ρx, and an output density matrix ρy,
with the process described by a quantum operation, N ,

ρx
N→ ρy. (1)

Because of decoherence, the super-operator N is not uni-
tary. However, on a larger quantum system that includes
the environment E of the system, the total evolution oper-
ator UxE become unitary. This environment may be con-
sidered to be initially in a pure state |0E〉 without loss of
generality. In this case, the super-operator can be writ-
ten as

N (ρx) = TrEUxE (ρx ⊗ |0E〉〈0E |)UxE†. (2)

The partial trace, TrE , is taken over environmental degree
of freedom, and⊗means a direct product for the spaces on
both sides of the operator. Equation (2) can be rewritten
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as a completely positive linear transformation acting on
the density matrix:

N (ρx) =
∑
i

AiρxA
†
i , (3)

in which the Ai satisfy the completeness relation∑
i

A†iAi = I, (4)

which is equivalent to requiring Tr[N (ρx)] = 1. The
mutual information of a classical channel with classical
sources, written using quantum formalism become [14]

H(x : y) = H(ρx) +H(N (ρx))−He(ρx,N ), (5)

in which H(•) = −Tr [• log2 •] is the von Neumann en-
tropy [15], and

He(ρx,N ) ≡ −Tr(W log2W ), (6)

with

Wij ≡ Tr(AiρxA
†
j) (7)

measures the amount of information exchanged between
the system x and the environment E during their interac-
tion [2], which can be used to characterize the amount of
quantum noise, N , in the channel. If the environment is
initially in a pure state, the entropy exchange is just the
environment’s entropy after the interaction. Hence, the
coherent information is defined as

C(ρx,N ) ≡ H (N (ρx))−N(ρx,N ), (8)

which plays a role in quantum information theory analo-
gous to that played by the mutual information in classical
information theory.

3 One-Pauli channels

In what follows the influence of noise on three kinds of
one-Pauli channels with a general input state

ρx =
1
2

(I + a · σ) (9)

is considered. Here, I is the identity matrix, a =
(a1, a2, a3) is the Bloch vector of length unity or less, and
σ is the vector of Pauli matrices, which are defined as

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (10)

The output of the channel can always be written as

N (ρx) =
1
2

(I + b · σ) . (11)

Two more definitions are needed in our computing for the
channel properties: The von Neumann entropy is

H(ρx) = −
∑
i

θi log θi, (12)

in which θis are the eigenvalues of the density matrix ρx.
Furthermore, the (entangled) fidelity

F =
∑
µ

(TrρxAµ)(TrρxA†µ), (13)

is also of our concern, since it represent the quality of the
signal transmitted.

3.1 σ1 channel

A σ1 channel can be written in terms of Ai’s in
equation (3) as

A1 =
√
xI, A2 =

√
1− xσ1. (14)

This channel flips the qubit amplitude with probability
1− x. We have

b =
(
a1, a2(2x− 1), a3(2x− 1)

)
. (15)

The matrix W for the σ1 channel read,

W =
(

x a1

√
x(1− x)

a1

√
x(1− x) 1− x

)
. (16)

It eigenvalues are

λ1,2 =
[
1±

√
1− 4x(x− 1)(a2

1 − 1)
]
/2. (17)

Hence,

N = −
2∑
i=1

λi log2 λi, (18)

while θ1,2 =
[
1±

√
a2

1 + (a2
2 + a2

3)(1− 2x)2
]
/2. This x−

N , C −N relationship is plotted in Figure 1a.
For the σ1 channel the entangled fidelity

F = a2
1(1− x) + x. (19)

The relation between the fidelity and the noise is plotted
with the coherent information in Figure 1a.

3.2 σ2 channel

Similarly, a σ2 channel can be written in terms of Ai’s in
equation (3) as

A1 =
√
xI, A2 = −i

√
1− xσ2. (20)
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Fig. 1. Parametric plots of the retention rate, x, versus noise,
N (solid lines); coherent information, C, versus noise, N , (long
dashed lines) and fidelity, F , versus noise, N , (short dashed
lines) for the parameter x from 0 to 1 and (a) σ1 channel with
initial state a1 = 5/10, a2 = 6/10, a3 = 6/10; (b) σ2 channel
with initial state a1 = 6/10, a2 = 5/10, a3 = 6/10; (c) σ3

channel with initial state a1 = 6/10, a2 = 6/10, a3 = 5/10.

This channel flips the qubit amplitude and phase with
probability 1−x. The action of the channel on this density
matrix is:

N (ρx) =
1
2

(
I + b · σ

)
, (21)

in which

b =
(
a1(2x− 1), a2, a3(2x− 1)

)
. (22)

The matrix W for the σ2 channel read,

W =
(

x ia2

√
x(1− x)

−ia2

√
x(1− x) 1− x

)
. (23)

It eigenvalues are

λ1,2 =
[
1±

√
1− 4x(x− 1)(a2

2 − 1)
]
/2. (24)

Hence,

N = −
2∑
i=1

λi log2 λi, (25)

while θ1,2 =
[
1±

√
a2

2 + (a2
1 + a2

3)(1− 2x)2
]
/2. For the

σ2 channel

F = −a2
2(1− x) + x. (26)

The relation between the fidelity and the noise is plotted
with the coherent information in Figure 1b.

3.3 σ3 channel

A σ3 channel can be written as

A1 =
√
xI, A2 =

√
1− xσ3. (27)

This channel flips the qubit phase with probability 1− x.
The action of the channel on this density matrix is:

N (ρx) =
1
2

(
I + b · σ

)
, (28)

in which

b =
(
a1(2x− 1), a2(2x− 1), a3

)
. (29)

The matrix W for the σ3 channel read,

W =
(

x a3

√
x(1− x)

a3

√
x(1− x) 1− x

)
. (30)

It eigenvalues are

λ1,2 =
[
1±

√
1− 4x(x− 1)(a2

3 − 1)
]
/2. (31)

Hence,

N = −
2∑
i=1

λi log2 λi, (32)

while θ1,2 =
[
1±

√
a2

3 + (a2
1 + a2

2)(1− 2x)2
]
/2. For the

σ3 channel

F = a2
3(1− x) + x. (33)

The relation between the fidelity and the noise is plotted
with the coherent information in Figure 1c.

We noticed that for all three channels the capacity is
always non-positive whatever the amount of noise is.

4 Conclusion

In conclusion we found, as far as the coherent information
and fidelity are concerned, these three one-Pauli channels
are the same except for the fidelity of the σ2 channel. This
is perhaps the reason that we found in the previous works
why there is noise enhancement of the fidelity but could
not find noise enhancement for the coherent information.
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